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1. INTRODUCTION

Traditionally, quality control charts have been designed with re-

spect to statistical criteria only, and the control methodology is based

on the independence and normality of serial samples. At first the pro-

duction process is assumed to be characterized by a single in-control

state. For example, if the process has one measurable quality character-

istic, then the in-control state will correspond to the mean of this
C-.

quality characteristic when no assignable cause is present.

Now we consider the model: ', rC - - ,

xt + t(1.)

where p is a constant, E is an error and X is t-th observation. It is

'

.  of interest to select the sample size, statistical characteristic of Et

and control limits so that the power of the test to detect a particular

shift in the quality characteristic and the type I error probability are

equal to specified values. Usually, Et. t = 1,2,... is considered to

be independently normally distributed with zero mean and common variance

2 2
, where a is known or unknown. In this case, consideration of statis-

tical criteria and practical experience have led to general guidelines

for the design of control charts resulting in widespread use of samples

of size 5, three-sigma control limits, and a sampling frequency of one

hour for the X-chart (see Duncan [3]). In the sequel, we set

n n 1/2#' Xi : p *jXiSi :Xin+j" i,2;
, n jl nn /'

kk !?y
s : : .. ..
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'Wr



* ~: . . '~terof samples. Hereafter we useX

~ ~. ;."er~1 3:- quantity control limits on

-7 *~*,(1.2)

A I A A (1.3)

,*** - ~ .1e#,,a~'tion is known or estimated.

" '; -lits on the standard deviation are

- * B ,), (1.5)

ocn or estimated, where

- ) (1.7)

B 2C + 3C3  (1.8)

24 1 3 3(1.9)

9 1-. Bi 24 are tabulated in the
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literature (see Grant [4]). The process will be considered under con-

trol if the estimate of the mean and the estimate of the standard de-

viation of the process remain within prescribed control limits above.

In practice, a number of data sets in economics, business, enqineerinq

and the natural science often are present in the form of time series.

In other words, the observations are dependent, i.e., &t's of model (1.1)

are not white noise; for example, { t' t=O,±l, ...} is an autoregressive

moving average (ARMA) with order (p,q). So the problem is how to deter-

mine 3a control limits. Stamboulis [7] studied AR(l) with parameter a.

Vasilopoulos [8] extended Stambouli's results to ARMA(p,q) model. Vas-

ilopoulos and Stamboulis [9] together investigated the case AR(2) =

ARMA(2,O). It is different from classical control factors. How diff-

erent it is depends on the stochastic properties of the process. Since

the method is similar, we only discuss AR(2).

a.'.

4'
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2. CONTROL CHART ON THE SECOND ORDER AUTOREGRESSIVE MODEL

In model (1.1), assume t is an AR(2) model, that is

Et = l~t-I + c'2&t-2 + Ct (2.1)

where {ct} is a white noise series with ECt = 0 and V(Ct) = 2, and

a2 are constants. For stationarity of AR(2), it is necessary that the

roots of the characteristic equation of the AR(2) process

,(B) = 1 - aIB - a2B
2 = 0 (2.2)

must lie outside the unit circle, which is equivalent to the alpha co-

efficients being in the triangular region:

a:" 2 + a, < 1, a2 - c'I < 1, - < a2 < 1

(see Box and Jenkins [2]). The variance of the AR(2) process is given

by

,:..';'-"2 [I- 2'

CF- cL u - a2- aO (.3

2)

Suppose Yk' k=O,±l, ... , are the autocovariance functions of the
2 2

AR(2) process, then a and the variance of the sample mean Y are

given in terms of Yk by

a2 = YO' (2.4)

2 1 n-l 1
Cx n [y 2 10 )yt] . (2.5)

,--. In order to evaluate the control limits for X, we need to

evaluate a2  This can be accomplished by (2.3)-(2.5) if al' a2 and

2 2 are known. Therefore,if the process variance 02 is known, the control
st
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limits of the model described by (1.1) and (2.1) is modified to

±A(a 1 cz2sn)a (2.6)

where

Maci1,c29 n) = X12(a1,t2 n)- 3, (2.7)

X(ci1 ct2 n) = 1 +2 1 (1 bt (2.8)

'a2 ~ t= 1 t

bt = 'Yt/'Yo (2.9)

The expression of X(als ,c n) is based on the expression of a
2

12OT

In order to construct the x-chart when the standard deviation is

unknown, we must evaluate the auxiliary parameter C 2(a 1,a 29n) first,

which is also needed to construct control limits of the standard devia-

tion. Since S2/S2is ditiue sxn2. we get

-; E(S) =C 2(t, 2 nc r (l - i~y ~(1-t)b\ O(.0

Hence,

C (cagan) 2 C2.( .iT(1 -t)b t)/ (2.11)

To obtain an approximate expression for E(S), we use this ex-

pression of E(S):

E(S) = E/7 A ( ES ) 2 8- ) jrS 2 (2.12)

In general, the last term of (2.12) is smaller than the first term.

For example, let n 5 . Then the last term of (2.11) is 0.002144 4-S,

----------
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so we can omit this term and get the approximate formula:

( VarS2
E(S) (- .(2.13),t k7 tz ) )

The expected value and variance of S2 can be obtained by

ES2 = YO - n (2.14)

and

Var(S 2 )=- n n n -12

tl 1 =l 1_1 =

• .' ,n n n

jtl 1"T=l y=l

But, from the expression of Var(S 2), the complexity of (2.13) is not

better than (2.10).

By replacing A1(alsa2,n), C3 (a ,l,2 ,n), Bi(al,a 2,n) for Al, C3 and

Bi , i = 1, 2, 3, 4 of (1.3) and (1.6)-(1.8), respectively, the modifica-

,,.- tion of control chart limits in an AR(2) model is obtained.

The substantial ranges in the values of X(a'la2 'n) and C2(aIca2,n)

greatly affect the control factors. Vasilopoulos and Stamboulis [9]

gave an example to illustrate this result.

LIZ
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3. CONTROL CHARTS IN MULTIVARIATE CASE

Now we consider multivariate case. The model in this case is

= + (3.1)

where is a mxl constant vector, {y t =1 2, ...}is a m-dimensional

stationary process with zero mean vector. Set

. n1 nn Ii --i (xi - x-(xi _X
-" n il n-Il '

1=1-- -1

where the prime means transpose of a matrix (or vector). Let x be the

: s global mean over several subgroups of size n, and S be the pooled sample

covariance. It is well-known that if t = 1,2, ... is a series con-

sisting of white noise with distribution Nm (O,A), the X-control chart

has been studied by many authors (for example, Ghare and Torgrersen,

1 1
*- .Jackson and et al). From the facts that ('x-n)'(-) (-_j) and

1, n1 - 2

-)'(-)-I(x- are distributed as Xm and Hotelling T -statistics

respectively, we can construct the quality control region on x based on

A is known or unknown. When A is known, the control region is

D : {i: n(x- )'A- ( -x) < X2 ()}. (3.2)

V This is an elliptical region. When A is unknown, the control

region is

D = {x: n-m+-x- x)Sl(x-) < Fm,n-m+l(a)}. (3.3)

But in practice, {t} is not generally a white noise series. When

{&t Iis serially dependent and described by p-dimensional ARMA(p,q)

model, the control region of mean vector will be modified. For simplicity,
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we will discuss p-dimensional AR(P) model. Let

X t : + -t(3.4)

It = Bl-+" Bpt- + - (3.5)

where Bi , i =I, ... ,p, are mxm matrices and c-t a white noise series with

distribution N m(O,E), E > 0. Furthermore,we can also generalize (3.5) to

the following form:

t= Blt 1  + -. + : + Act, (36)

where A: mxr, ct IN r(o,) such that AEA' > 0. The model described by

(3.5) and (3.6) is often met. For example, in the production of synthe-

tic fiber the tensile strength x1 and diameter x2 may be equally impor-

tant quality characteristics. Their flucuations mainly result from mois-

ture, then, in proper productive process, (xl,x 2 )' may be described by

(3.5) and (3.6). Here we only discuss the model (3.5) because the method

treating model (3.6) is the same as (3.5).

It is well-known that the necessary condition that the AR(P) model

(3.5) is stationary is all the roots of determinant of (xPI - XPIB -

- Bp - B p) lie within the unit circle. Set
p-l p

Ak ;! E(xt - 2)(xt+k -

then. there also exist "multivariate Yule Walker" equation:

A 0 = B A + + B A + E, (3.7)

=k B-A'k- + B2A'_ 2 + " + BpAk_p, k > 1, (3.8)

A-I Ak.' (3.9)

10k
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Hence, if Bi , i =1, ... ,p, and E are identified from data, then all

Ak, k=O,l, ... , can be calculated from (3.7)-(3.9). Furthermore, the

covariance matrix of- can be obtained:

n-1

A= -(A 0o+(1 -In)(At + A )) (3.10)
t=l

where A0 is the covariance matrix of xt .

Since 1- (*- is a x distribution with degrees of freedom m,

we can get the control region of mean vector within an elliptical region:

D = {X: (x-x)' A-(x-x) < x2 (a)}. (3.11)

X m

Notice that if = Et in (3.5), i.e., our process is classical,

then the control region described by (3.11) is the same as the one de-

scribed by (3.2). When p 0, these elliptical regions described by

(3.2) and (3.11) are different from the lengths and directions of their

* major axes.

.1
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